US 8 - Redoxreaktionen II Galvanische Zelle on on durch eassige Membrown Cusou (m) In einer normalen Redoxreaktion kann man die Zusoged Elektronenübertrayung nicht nutzbar machen Beim galvanischen Element findet Oxidation und Reduktion röwmlich getrennt statt, sodors die Elektronon gezwungen S042 werden über einen Leifer von dem Ort der Oxidation (Anode) zum Ort der Reduktion (Kathode) zu Kliessen. Diesen Elektronan fluss (Strom) Könnan wir messen und nutzen ()xidation (Anode) Reduktion (Kathode) Das Zink oxidiert, womit sich die Zinkanode zorselet. 7n(1) -> 7n(1)+ 2e- (u(1)+ 2e- -> (u(s) An der Kupferkathoole werden Kunserjonen aus dar (Pol (69 - Pel Lösung zu elementarem Kupfar reduziert und an der Elektrode angelagert. Bei der Reaktion wird die linke Lösung positiv geladen (Inzt geht in Lösung) und die rechte Lösung negativ (Entrug von Guzt), weswegen ein Ladungsausgleich stattfinden muss. Dutar fliesst 5042 durch die Membran von der rechten Lösung in die Linke. Lellpotenzial (bei Standardbedinguyan) Die Spannung, die bei einer galvanischen Zelle vorliegt, ist materialabhöngig. Deswegen sind die Stundardreduktionspotenziale tabelliert Aus dieser Tabelle kann main ablesen wie gorne ein Molekül reduziert wird (je grosser Ered, desto besser die Reduktion. Andershorum kann man auch ablesen wie "gerne" ein Nolekül reduziert wird, denn je schlechter das Reduktionsvermägen, deste besser das Oxidationsvermägen Es wurden alle Spannungen mit der $Ox + ne^- \rightarrow Red$ e- Li kunn Li⁺ + e⁻ → Li viel besser Wasserstoffreserenzzelle berechnet Na⁺ + e⁻ → Na -2.71 oxidido-Al³⁺ + 3 e⁻ → Al wenden -1.66 Wie berechnet men die Zellspannung Fzan: $2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^-$ -0.83 Zn²⁺ + 2 e⁻ → Zn -0.76Fzelle = Fox + Eral Ni²⁺ + 2 e⁻ → Ni -0.26 2 H⁺ + 2 e⁻ → H₂ 0.00 Bsp. In In the Cuzt Cu $Cu^{2+} + 2e^{-} \rightarrow Cu$ +0.35 $O_2 + 2 H_2 O + 4 e^- \rightarrow 4 OH^-$ +0.40 l₂ + 2e⁻ → 2l⁻ +0.54Ered (Zn) = -0.76 V => Eox = - Ered (Zn) = 0.76 V $Ag^+ + e^- \rightarrow Ag$ +0.80 Fz kom am $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2 O$ +1 24 Ered (Cu) = 0.35 V => Ered = Food (Cu) = 0.35 V beston reduziont Cl₂ + 2 e⁻ → 2 Cl⁻ +1.36 werden $F_2 + 2e^- \rightarrow 2F^-$ +2.87 Ezelle = Fox + Ered = 0.76 V + 0.35 V = 1.11 V

Thermodynamik von Redoxrenktionen Für eine Redoxreaktion lösst sich das Zellpotenzial E berechnen und daraus auch die freie Realthionsenthalpie (Reaktions-Gibbsenorgie)

$$E_{zelle} = E_{ox} + E_{reol}$$
 $\Delta_{rxn} G_1 = -z F E_{zelle}$

Das Halbzellenpotenzial E ist für Standardbedlingungen tabelliert, jedoch ist abhängig von Temperatur T der Anzahl der übertragenen Elektronon z and der Aktivitäten der Produkte / Edukte (zusammengestesst im Reaktionsquotien Q)

 $E = E^{\circ} - \frac{RT}{2F} en(Q)$ Standardbed. $E = E^{\circ} - \frac{0.059V}{2} eg(Q)$

Favoday - Gresetz It = zn F Für die Reaktionsgibbsenorgie Dran Go und die Gleichgewichtskonstande K

gewichtskonstante K definiert, jedoch sind bei K Gleichgewichtskonzentrationen.

$$A + B \rightarrow ZC + D \qquad K = \frac{a_{2}(c) \cdot a_{1}(D)}{a_{1}(A) \cdot a_{1}(B)} \approx \frac{[c]_{1}^{2}[D]_{2}}{[A]_{1}[B]_{2}} \qquad Q = \frac{a_{2}(c) \cdot a_{1}(D)}{a_{1}(A) \cdot a_{1}(B)} \approx \frac{[c]_{2}^{2}[D]_{3}}{[A]_{1}[B]_{2}}$$

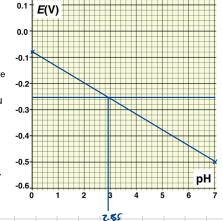
Wenn eine dieser Konzentrationen die H+-Konzentration ist, ist E abhängig von [HI] und folglich von pH-West Wir nehmen an dass sich die anderen Konzentration über Pan nicht veränden, weswegen wir die [Hi]-Abhängigkeit isolient betrachten

 $Q = \frac{[\mathrm{Red}]}{[\mathrm{Ox}] \cdot [\mathrm{H}^+]^{\varphi}} \qquad \Rightarrow \qquad Q = \frac{1}{[\mathrm{H}^+]^{\varphi}} \cdot Q' \quad _$ $= E_{\mathrm{red}}^{\circ} - \frac{0.059\,\mathrm{V}}{z} \cdot \mathrm{lg} \bigg(\frac{1}{[\mathrm{H}^{+}]^{\varphi}} \cdot Q' \bigg)$ $= E_{\mathrm{red}}^{\circ} - \frac{0.059\,\mathrm{V}}{z} \cdot \left(\,\mathrm{lg}\!\left(\frac{[\mathrm{Red}]}{[\mathrm{Ox}]}\right) \underbrace{-\varphi \cdot \mathrm{lg}\!\left([\mathrm{H}^{+}]\right)}\right)$ $E_{\rm red} = \underbrace{-0.059\,\mathrm{V} \cdot \frac{\varphi}{z} \cdot \mathrm{pH}}_{} + E_{\rm red}^{\circ} + \frac{0.059\,\mathrm{V}}{z} \cdot \mathrm{lg}\bigg(\frac{[\mathrm{Ox}]}{[\mathrm{Red}]}\bigg)$

$$N$$
 NH_2
 NH_2
 NH_2

i) Formulieren Sie eine abgeglichene Halbzellenreaktion für diese Oxidation. (1 Punkt)

Bei pH = 7 ist das Halbzellenpotenzial für die Reduktion von Oxalsäure (**H₂ox**) zu Glyoxylsäure (**Hglox**) *E*⁰′_{red} = −0.50 V.


- oxalsäure (**H₂ox**) zu Glyoxylsäure (**Hglox**) E^{0} red = −0.8 ii) Formulieren Sie die entsprechende Halbzellenreaktion und bestimmen Sie die pH-Abhängigkeit von E_{red} (**H₂ox** / **Hglox**) und
- tragen Sie sie in das vorgegebene Pourbaix-Diagramm ein. (2 Punkte)

 Glyoxylsäure Hglox

 iii) In welchem pH-Bereich verläuft die Reduktion von H2ox zu Hglox durch V2+ (Vanadium+II) unter ansonsten Standardbedingungen spontan ab? (E0red(V3+/V2+) = -0.255 V).

 (1 Punkt)

 iv) Formulieren Sie eine abgeglichene Reaktionsgleichung für die Reduktion von H₂ox zu Hglox durch V²+ und ermitteln Sie deren Gleichgewichtskonstante. (2 Punkte)

+ 2 H+

Even = Even (pH=7) + 0.059 v. 7 = -0.087 V

2e-

$$= E_{\text{red}}^{0} - \frac{0.059V}{2} \log \left(\frac{1}{[H \cdot J]^{2}} \right)$$

$$F_{\text{red}} = F_{\text{ved}}^{\circ} - 0.05gv \cdot pH$$

=> $F_{\text{ved}} (pH=7) = F_{\text{ved}}^{\circ} - 0.05gv \cdot 7$

Ezolle = Eox + Eved

(iri)