US 10 Konformations analyse I Konformations analyse ist ein sehr wichtiges Thema und wird den folgenden OC-Vorlesurgen immer wieder aufgegriffen, um die Stereoselektivität einer Reaktion zu erklären (vor allem in OC II). Konformationsanalyse beschäftigt sich mit der Rotation von Einzelbindungen. Newman-Projektion Bei der Newman-Projektion wird eine C-C-Bindung Frantal betrachtet um deren Rotation zu untersuchen. 600 Keilstrich-Newwoon-Projektion Schreibweise verdeckt ekliptisch gestaffelt Wenn wir die Einzelbindung jetzt drehen in der Neuwaun-Projektion fixieren wir das hintere C und rotieren das vordere C gegen den Ohrzeigersinn (wichtig). Bei Ethan haben wir zwei verschiedene Konformere, das gestaffelte and das verdeckte lekliptische Konformer. Das verdeckte ist energetisch ungünstiger, da die Hs sich gegenseitig dastossen. Wir können jetzt für jeden Drehminkel 0 (oder Diederwinkel) eine Energie messen E/kcal/wol , Energie unterschied verdeclite vs. gestablelte Kanformation 3 kcal/mol 3 kcal/mol => Energie Jur vordeckte Hs 1 keal Inol

Konformationsanalyse Butan Wir wählen in ACOCI meistens anseren Energienullpunkt für Konformaticusanalyse bei der gestaffelten Konformation von Ethan. Wenn wir jetzt ein grösseres Molekül wie Butan analysieren wird höudig gedrugt die Newman - Projektion entlang der C(2) - C(3) - Bindung zu zeichnen, womit die Lokanten nowoh IUPAC-Abraenklostur gemeint ist. gauche Me/Me: 0,9 kcal/mol verdeckte H/H : 1.0 kcal/mol verdeckte Me/H: 19 kcal/mol verdeckte Me/Me: 7.5 kcal/mol gauche symperipland r 0-300

E	ner	gje	n	bei	e	IJe	nk	ettig	ler	þ	ona	form	nolti	eno	CLYX	zylk	e	ìn	AC	OC	I				
•		` v^						u	,																
		Vev																							
•		e S										_						Par			1	n	Prel	hun	01.
		ere																						•	1
		٠ ا							3U)	Si	nd	iv	1W4	en e	аl	eicl	h!								
	L	9-	auol	e	И	e/M	e :	0.	0. 9		cal	/mo	(Ţ. <u>.</u>	0.										
	L	ve	rdeo	kte	ŀ	} / H	:		1.0	ı	<cal< td=""><td>/mo</td><td>(</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cal<>	/mo	(
	L>	ve	rdec	ktc	J	e/f	μ:		1.4	l	ccal	/mol													
		Ve							7.5		ccal	/mo	(
A)	Inci	idu	vol.s	he	Neise	iel																			
			U.																						
4	4.2 Konformationen offenkettiger Verbindungen (19 Punkte)																								
Es sind die Energien (relativ zu gestaffeltem Ethan) der folgenden Wechselwirkungen																									
angegeben:																									
\ \ \	Nechs	elwirk	ung		<i>auche</i> H₃/CH		verd	leckte	Н/Н		verde (CH ₃			verde CH ₃ /											
Energie/ (kcal/mol))	0.9			1.0				1.4			2.5											
Für die folgenden Verbindungen:																									
-	a) Zeichnen Sie die Newman-Projektionen entlang der C(2)–C(3) Bindung für die Konformationen mit höchster und niedrigster Energie; (8 Punkte)																								
b) Berechnen Sie diese Energien; (8 Punkte)										\neg															

- c) Markieren Sie alle gauche-Wechselwirkungen in den Newman-Projektionen. (3 Punkte)

Washington a	Konformation mit Energie	höchster	Konformation mit niedrigster Energie					
Verbindung	Newman-Projektion	Energie/ (kcal/mol)	Newman-Projektion	Energie/ (kcal/mol)				
Butan	Me Me H	4.5	H H H H Me	0				
2-Methylbutan	Me Me H H Me	4.9	H H Me Me	0.9				
2,2,3- Trimethylbutan	Me Me Me H	6.4	H Me Me Me Me Me	3.6				
2,2,3,3- Tetramethylbutan	Me Me Me Me	7.5	Me Me Me Me Me	5.4				