

Zeichnen Sie die folgenden Strukturformeln:

a) Isopropyl-5-formyl-2-hydroxy-4-methoxytetrahydrofuran-3-carboxylat. (5 Punkte)

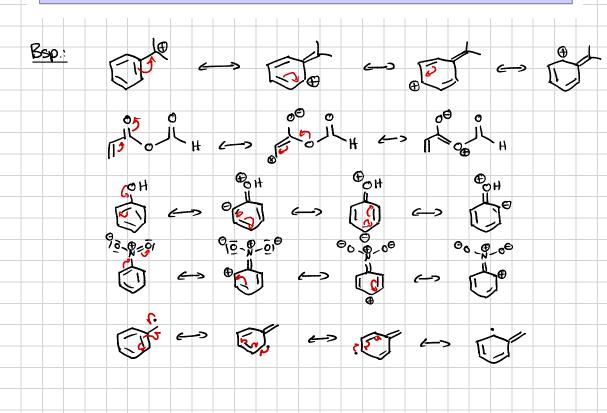
b) 3-Azido-5-cyan-6-dimethylamino-4-(iminomethyl)pyridin-2-carboxamid. (6 Punkte)

$$\begin{array}{c}
HN \\
N \\
N
\end{array}$$

$$\begin{array}{c}
O \\
N \\
N
\end{array}$$

$$\begin{array}{c}
O \\
N \\
N
\end{array}$$

$$\begin{array}{c}
O \\
N \\
N
\end{array}$$


c) 5-Methylsulfonyl-4-sulfanyl-3-(thioformyl)thiophen-2-sulfonsäure. (5 Punkte)

Klassische	e St	rukturt	Pehre:	Dipol wow	nent, Lewis	s-Struktur	, Resonaun Z
Formalladur					oder we		
		NHZ	⊕ ⊕	0 11	`oe		
Homolyse / Hete	olyse:	Binduys	spaltury	eiver)	kovolantan	Binduy	
		A	, -> /)· + · B	A -1	₿ → ,	NO + BO
		н	omolyse			Heterolys	e
Resonant:	Resona	int ode	r auch	n Mesome	enie besch	veibt dos	s Phànomon
							Lewisstruktu nestrukturen
					er Realität		n szjya ktansn
Dipdwoment	Jede	polave	Birdur	ng in e	inom Mole	kül hat	einon
	Dipol ve	ektor. C	ie Sum	me aller	Dipolvektore es Moleküls	en eines	Moleküls
	C02	kein	Dipol				
	Ø NH ₄	kein	Di pol				
		keiv					
	PH ₃	Dì,	00)				
	CS ₂	keiv	Dijool				
	03	Di	pol				
	CH2O	Di	γ ο ο)				

Mesomerie/Resonanz: Falls mehrere sinnvolle Lewis-Strukturen eines Moleküls gezeichnet werden können, hat das Molekül mehrere mesomere Grenzstrukturen.

Regeln für Resonanzstrukturen:

- 1. Die Atomkoordinaten (also die Lage der Atomkerne) muss gleich bleiben.
- 2. Die Realstruktur des Molküls entspricht der gewichteten Überlagerung aller Grenzstrukturen (Grenzstrukturen bilden die Grenzen der realität ab)
- 3. Das Molekül ist stabiler als jede Grenzstruktur.
- 4. Je stabiler eine Grenzstruktur, umso stärker trägt sie zur Realstruktur bei:
 - a) Eine Grenzstruktur ist stabiler wenn sie die Oktettregel erfüllt (für Atome der ersten und zweiten Periode darf die Oktettregel nur unterschritten werden).
 - b) Eine Grenzstruktur ist stabiler, wenn sie nicht ladungsgetrennt ist und falls doch, wenn die Ladung entsprechend der Elektronegativität verteilt ist.
 - c) Eine Grenzstruktur ist stabiler, wenn sie aromatisch ist.
 - d) Positive Ladungen sind bevorzugt auf Zentren mit geringem s-Anteil ('Kernnahe Orbitale sollen mit e⁻ besetzt sein')
 - e) Negative Ladungen sind bevorzugt auf Zentren mit hohem s-Anteil ('e⁻ sind dann näher am Kern')

