US8 - Thermochemie IL

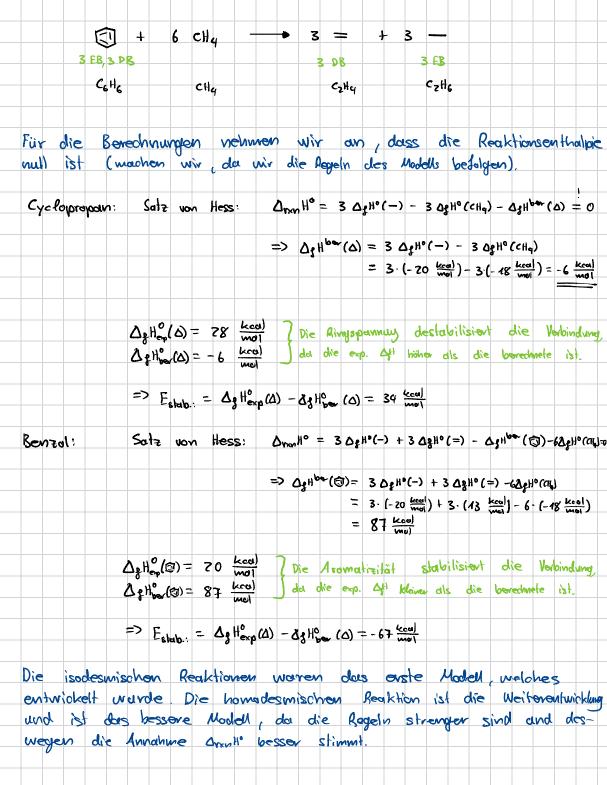
Ein relativ grosses Thema in der Klausur sind die isodesmischen and homodesmischen Reaktionen. Es ist einigermossen zeitautwendig in der Klausur zu lösen abour in der Regel einigermassen gut zu lösen, wenn man das ein wenig übt.

Diese Rouktionen sind rein hypothetische Reaktionen und sind nur ein Modell, wor wir anwenden, um gewisse chemische Ellekte zu quantifizieren. Effekte wie

"Aromatizital", "Aingspannung", "Konjugation" etc. haben definitive inen Einfluss auf

die Stabilität der Verbindung, es ist aber sehr schwierig einen talsächlichen Rahlenwert für diese Det)stabilisierung zu finden. Ringsponnung: \triangle \square Kovjugation:

instabil stata) instabil Ein Modell, um dies zu quantifizieren sivol isodesmische und homodesmische Reaktionen, die in den 70 er entwickelt wurden Wir gehen


dafür davon aus, dass die experimentell bestimmbare Standardbildungsenthalpie Debio sich additiv aus einem therovatischen Debion (Energie rein aus den Bindungsverhältnisse) und der Stabilisierung energie Esteh. (Resonanzstabilisierung) Stabilisiony durch Aromatizität, Destabilisioning durch Ringspannung etc.) zusummo

setzt Agao = Agaba + Estab Mit isodesmischen bzw. homodesmischen Reaktionen berechnen wir agaber womit wir dann mit dem Experimentalwert OgGo die Stabilisierupenergie berechnen können.

Def: Eine isodesmische Reaktion ist eine Reaktion, bei demen die Art der Birdungen nicht verändert wird, woh) aber die Struktur der Moleküle.

Isodesmische Reaktionen (JACS, 1970, 29, 4796)

+ 3 CH4 Δ 3 EB 3 EB (CH2) 2 CHG City

Hom	ndes	AA Ì C	che		Dav.	Lłù	310-F	10	(Tel	mil	ne.d	FOL		(0.7	6	37	31	7)					
																	Ĺ							
Ded:			gen bom																			Ar	٠ ر	der
																					sp	3 v	W.	3 H
			Ð	+		\$							•		00					0	sp	2 ,	ait	2#
			B De					2 Hg							6 El									
			73					- 0							3	8								
		9.0	}	+	3) ()					-	:	3	2	₽⊣	3			0	Sp	V	rit m't	4 h 2 h
	36	B, 3	DB			3									_	1	6 DB					ľ		
Cycle	210000	-110		Cal	.		и.	oce .		Λ		- ۱۵	2	Λ.	H° (~	~)	2	ЛаН	_ 0 0	_ \	_ ^	ube	۲ (۷.) = (
Cycu	storeto	GW		Ju		yovi	74	- 52																, _ ,
										=)	> 2	7 t H,	°~ (H°(ts Kco
																, (-	. 25	wol) – .	> (-	ZO -	uncil '	=	12 mg
				. u'	0/,	<i>> -</i>	7	o .	kco.		7 ,		0)	-0-			مام	- Lala	lici		4		Val	bindu
					•				mol kca)		10			1		Г								131.
																1.	L.al							
									H _o ×b															
Senzo	1:		S	atz	v	oν	He	9 SS	3	٥	×∿ H°	=	3 -	وک	H° (/	77)	- 3 .	ΔgH	°(=) -	ద్మ	Hpar	(@)	
										=>	ړ۵	Hpe	(宣)	- 3	3 · C	٩	1/7) -	3.∆	eH°	(=)			
														= ;	3- (26	kcci moi	!) –	3. ('13	kca))		
														= :	39	wel	3							
			Δ_{ξ}							7							sto							ndung
			Δ	H,00	\((3)) =	39	ke m	(<u>v)</u>	J	da	die	en	φ.	∆ H	Me	ines	als	die	e k	evec	hneta	i)	st.
			=>																					

1	Fæll		ZUY	Be	med	nuu		ler	Des	abili	sievu	u o	dur	:h	Riv	nd Sk	ZUNN	unes
nd	d	ie	Nov	node	im2	sche	n	Reak	Desl tioner	, e	inide	mos	ser	4	lei'cl	nt.	aut	EUS
													wrg					
	Δ		3	_	-			>	3				85					
		+	4	_	-			->	4.	_			77					
		• +	ς	`	-			->	\$	~			6					
	0	. +	6	_	-			>	6.				O					
	0	l +	7	_	-	-		->	7.	_			7					
Jur	ngsl	eis	<u>nel</u>															
Reak	Span	nung n be	senerg	gie vo	n suk	stituie			opanen en expe									
	Mol	ekül		H	₃C−C⊦	13	H ₃ C	с^сн	3	Ph			Ph					
		al/m	ol)		-20			-25		36		H ₃ (1	13	_			
ΔΡ	ዛ _f °/(ko	Lai/III	0.,															
а	a) Fo Sp	rmuli annu nkte)	eren ngsene	ergien	im C	yclopr	opan	und Ph	Reaktion	oprop	an besti							
а	a) Fo Sp Pu	rmuli annu nkte)	eren ngsene	ergien	im C	yclopr	opan	und Ph		oprop	an besti							

b) Die Spannungsenergie in Cyclopropan ist 28 kcal/mol. Berechnen Sie die experimentelle Standardbildungsenthalpie von Cyclopropan. (6 Punkte) Standardbildungsenthalpie von Cyclopropan: $\Delta H_{f,theor}^{\circ}$ (Cyclopropan) = $3\Delta H_{f}^{\circ}$ (Propan) - $3\Delta H_{f}^{\circ}$ (Ethan) = $3\cdot(-25)$ - $3\cdot(-20)$ = -15 (kcal/mol) Spannungsenergie (SE): SE(Cyclopropan) = $\Delta H_{f,exp}$ °(Cyclopropan) - $\Delta H_{f,theor}$ °(Cyclopropan) = 28 kcal/mol $\Delta H_{f,exp}$ °(Cyclopropan) = $\Delta H_{f,theor}$ °(Cyclopropan) + SE(Cyclopropan) = -15 + 28 = 13 (kcal/mol)

c) Berechnen Sie die Spannungsenergie in Phenylcyclopropan. (6 Punkte)

$$\Delta H_{f,theor}$$
 (Prenylcyclopropan) = ΔH_f (Etnan) = $2 \cdot (-25) - 3 \cdot (-20) = 11$ (kcal/mol)
Spannungsenergie (SE): SE(Phenylcyclopropan) = $\Delta H_{f,exp}$ °(Phenylcyclopropan)

Spannungsenergie in Phenylcyclopropan:

 $\Delta H_{f,theor}$ (Phenylcyclopropan) = 36 – 11 = 25 (kcal/mol)

 $\Delta H_{f,theor}$ (Phenylcyclopropan) = ΔH_f (2-Phenylpropan) + $2\Delta H_f$ (Propan) - $3\Delta H_f$ (Ethan) = 1 +