US 5 - Stoffe und chemische Reaktionen II

Die ideale Grasgleichung

8 = W 187 = Kg

Gase lessen sich in der Chemie ziemlich get mathematisch beschreiben, da die

Atome weit auscinander liegen und viel freier Raum verhonden ist. Ein häufig vor-

wendetes Modell für Gase ist dus ideale Gas, bei dem man von keinen Wedselwirkungen zwischen den Gasteilchen ausgeht Dieses Modell ist einfach, aber macht auch viele Vereinflochungen

Es gill das ideale Gasgesetz: pV = n AT Druck [p] = An = kg m^s =, Volumen [V] = m3, Stollmenge [n] = mol, Gaskenstante R, Temperatur [T] = K

Der Partialdruck p; ist das Konzentrationsäquivalent för Gosmischungen und rührt duher duss jedes Gosteildnen im idealen Gos gleich viel Platz benöligt in einem Gosgemisch lässt sich ein Partialdruck po für jede Spezies i berechnen, wober der Gesamldruck plut

des Gresgemische gerade die Summe aller Autialdrücke entspricht. $p_{bet} = p(A) + p(B) + p(C) = \sum p_i$ $Q_{0}Q_{0}Q_{0}$

Der Molenbruch X; ist eine prozontuale Grosse wie viel Stoffmenge eines Stoffes in einer Mischung verhanden ist. Diese lässt sich auch über den Partialdnuck somako

 $\Rightarrow p_i = x_i p_{tot}$

Die Diolnte 3 einer Substant ist eine empionische Grösse dufür wie sohwer ein be-Stimmtes Volumen des Bloffes ist

1. Eine bestimmte Menge N_2 (g) nimmt bei $\theta = 0.00$ °C und p = 1.00 bar ein Volumen V = 1.00 m³ Für solche Berechnungen: ideale Gasol. ein. Berechnen Sie die Volumina bei θ = 0.00 °C und den folgenden Drücken:

 $\rho V = nRT = const => \rho_i V_i = \rho_i V_j \Leftrightarrow V_j = \frac{\rho_i}{\rho_i} V_i$ a) 8.00 bar

a) 8.00 box = 8.00 × 105 Pal Vg = 1.00×105 Pal 12 = 0.125 ...3 c) 5.00 mbar d) 0.200 atm

e) 500 N m⁻² f) 15.2 mmHg b) 500 Pa Vg = 4.00×105 Pd 1 = 200 m3 C) 5.00 where = 5.00 × 102 Pa

Vg = 4.00×10 Per 1 = 4.5 m3 d) 0.200 atm = 20265 Pa Vg = 4.00×105 Pet 1= 200 m3 1 atm = 1.013 × 105 Pa 1 bar = 105 Pa e) 500 Nm-2 = 500 fa

Vg = 4.00×10 Pet . 1 = 49.3 m3 8) 15.2 mmHg = 2026.5 Pg

Vg = 4.00×105 Par . 1m2 = 1.25×10 7 2 9) 8.00 kbar = 8.00×408 Pa

Vg = 4.00×10° Par . 1m2 = 99.3m3 h) 16.2 Torr = 2026.5 Pg

Volumen 800 Torr

Wenn alle Hähne geöffnet werden, mischen sich die Gase. Berechnen Sie für das Gasgemisch die Partialdrücke der einzelnen Gase sowie den Gesamtdruck im System. Nehmen Sie an, dass

die Temperatur konstant bleibt. Das Volumen der Kapillarröhren, die die Kolben verbinden, kann vernachlässigt werden.

Was für ein Volumen nimmt 321.0 g Methan (CH₄) bei Temperatur von 25.00 °C und

 $\rho V = \eta RT = const \Rightarrow \rho_i V_i = \rho_j V_j \Leftrightarrow \rho_j = \rho_i \frac{V_i}{V_j}$

PM2 = 265 Torr . 1.0 L = 106 Torr) PHE = 800 Torr . 1.0 L = 320 Torr { Ptot = PNe 1 PHE 1 PHE 2 PME 2 PME 1 PHE 1 PHE 2 PME 2 PHz = 532 Torr . 0.5 L = 406 Torr)

Wir habon ein Gosgemisch, welches sich nuch Össen der Hähne auf das Gesauntvolumen Vg = (10+1.0+0.5) L = 2.5 L expandient. Die Temp. und die Stollmange dar drei Gase bleibt geleich

Die Stoffmenge in von CH4 kann berechnet weden. $pV = \eta RT$, $n = \frac{m}{M} \Rightarrow pV = \frac{m}{M}RT \Leftrightarrow V = \frac{mRT}{Mp}$

m = 321.0 g, T = 298.15 K M = 16.04 m/y, p = 1 ber = 105 fm

Mischungen von Stoffen

seteungsverhältnis charakterisieren Welche Masse von Kaliumpermanganat (KMnO₄) muss man einwiegen, um 500 mL einer wässrigen Lösung mit der Stoffmengenkonzentration $c(KMnO_4) = 2.00 \times 10^{-2} \text{ mol L}^{-1} \text{ herzustellen}$?

Wie wird die Lösung praktisch hergestellt?

Konzentrierte Phosphorsäure H₃PO₄ (85.0 Gew.-% in Wasser) hat eine Dichte von 1.70 g cm⁻³. Wie gehen Sie vor, um aus dieser Säure 1.00 L Phosphorsäurelösung in Wasser ($c = 1.00 \text{ mol L}^{-1}$)

Gemische sind Mischungen von reinen Stollen, wobei wir Gemische nach ihrem Zusammen-

 $c = \frac{n}{v}$ $n = \frac{m}{u}$

= 1.58g Erstmel in Stoffmengenkonzentralien unredmen:

herzustellen?

Phasendiagramme Um Stodle in verschiedene Appregatszustände zu über-Supercritical führen kann man entweder den Druck p oder die Temperatur T ampossen. Wenn man grafisch aufträgt in wolchem Agregatszustand ein Stoff bei gegenem Druck und Temperatur ist, erhäll man Triple Point ein Phasendiagramm. Figure 10: Unary phase diagram of a general substance. The sc Koexistenzline: Zwei Phosen stehen im Gleichgewicht liquid and gas phase ((s), (l) and (g) respectively) are separated by coexistence lines, where the two neighboring phases coexist. The triple Drei Phosen stehen im Gleichgewicht Tripelpunkt: point and critical point are the two invariant points in the diagram, as there are three phases coexisting, which is the limit given by the phase Was repräsentieren die Linien in einem Phasendiagramm? a) Die Flächen im Phosendicygramm. a) die Anwesenheit nur einer Phase b) zwei Phasen im Gleichgewicht b) Die Linien im Phosendiagramm drei Phasen im Gleichgewicht c) Der Tripolpunkt d) das Verschwinden der Unterscheidbarkeit zweier Phasen d) Kritischer Punkt Gegeben ist das p,T -Phasendiagramm einer reinen Substanz G: Slussig A: fest B: Tripelpunkt D: krit. Punkt C) E: Sommelzen / Grefrieren F: Verdumpten / Kundensieven Negative Steigung: p1 => Tachmele V In welcher Phase liegt die Substanz unter den p,T-Bedingungen A und G vor? Wie heissen die Punkte B und D? Welche Prozesse verlaufen an den Punkten E und F? Wie verändert sich der Schmelzpunkt der Verbindung bei Druckerhöhung? Nachfolgend sind die Phasendiagramme von Wasser (links) und Kohlenstoffdioxid (rechts) abgebildet (nicht massstabgetreu). Überprüfen Sie die folgenden Aussagen. Klassifizieren Sie diese als richtig oder falsch. falsch richtig Wasser siedet bei p = 2 bar und θ = 100 °C. × Der Gefrierpunkt von flüssigem Wasser sinkt mit steigendem Druck. Bei p = 0.61 kPa und θ = 0.01 °C besteht ein Phasengleichgewicht zwischen Eis, Wasser und Wasserdampf. Bei Drücken von p < 0.6 kPa gibt es kein flüssiges Wasser Kohlendioxid liegt bei p = 3 bar und T = 298 K als flüssige Phase vor. Trockeneis sublimiert bei p = 1 atm und $\theta = -78.5$ °C Der Schmelzpunkt von festem Kohlenstoffdioxid steigt mit steigendem

Bei Drücken von p > 7370 kPa und Temperaturen von $\theta > 31$ °C befindet

sich Kohlendioxid im überkritischen Zustand.

C	16M	امون	•	Pa		\																				
								0						D.				-	NE B .		1-			1		
																		gelo								
WO	qo	1.	Es '	reag	K, enc	רע	die		duk	le	(Keq	kta	udo	1) 7	eu c	len	fre	oduk	ton	W	25	Widli	n li	1 8	tochio	-
we	trisel	NON	Rec	ektio	nsgli	ciohu	nger	y	ołi o	t.	Die	Aus	beut	e	(Yiek	d) i	· ta	die :	latsi	ich Li	che	ge	mes:	sene	· M	ange
							_											hen								•
	setz									_'	Ī									,				0		
OWN	sere	wy																								
11.	Bei der	folgen	den Re	aktion '	wird 10	.0 g Ca	alciumca	rbonat	(CaCO ₃) einge:	setzt ur	nd 5.33	3 g	1.4	.		0									
	Calcium	oxid (Ca	ıO) erha	lten. W					beute?				_										bei	her	fekt	cw
					Ca	iCO₃ →	CaO+	CO ₂						Ü)MSD	lε	Tol	usko	ww	en	Ż.					
															n _{Ca} (≟ ท	Ca0	=	:> n	C40 '	= =	CaOs			
														١,	M] =	M.	^{хо} . N С¤0	can	= <i>M</i>		we.	10 <u>1</u>	= S .	61 q	
															La				-40			/1 Cc	208		0	
															<i>1</i> .	ı		N _{rea}	L _	Whee	<u>u _</u>	5.8	Soj _	95	1%	
															/IUSK	eut	e ·	nth		mtı	•	6.6	пу	.		
13.	Bei der fo	olgende	n Reakti	on entst	eht Kohl	enstoffn	nonoxid	(CO).						0.						-						
			F	e(CO)5 +	2 PF ₃ +	$H_2 \rightarrow F$	e(CO)₂(F	PF ₃) ₂ (H) ₂						Vie	MO	KWM	ale	Me	nge	b	<u> </u>	10	1ëvigj	f d	avon	ab,
	Welche S H2 gebild		nge n(CC)) wird a	us einer	Mischur	ng von 5.	0 mol Fe	e(CO)5, 8	.0 mol P	F₃ und 6	.0 mol		Wie	Vie	el '	Stod	mo	nge	do	r 1	Eduk	ŀе	Yeu	gr i su	eu)
	(Ein karie	ertes Pa	oier für d	die graph	nische Lö	sung de	r Aufgat	e befin	det sich	am Ende	der Übi	ung).		Kö	NVE	n :	=>	N	and	SI	inbō	ome	trie	an	œsse	301 .
														E	om c	l I	Fe ((0)5	>	5 4	lor	Produ	kt)	R.	in ki	man
														8	g mo	ŧ	PF.			4 ,,	no.	fradi	ud [Fi	leud leud	unel La
															امييا ک	,	H-		>	6	٠١	Pard.	المار	\ 	12 mol	<u> </u>
															J J.,J.					- ,	·• 1	,,,,,,	ini j			
۳.		01									28	_				_		0	1.1.		0.					0.4
七的	ne	Sto	and	urd	aud	gaN	9 e	in	de	r C	Mei	Mic	18	•	≥S •	ein	e	Hec	uktic	MS	/ICK	hun	ny –	aus	sed	ciclon
Da	bei	wl	USS	SC	lar	nge	di	C	Stô	chio	me	visc	hev	K	vet	fiel	en	en)	de	v	Rea	uktio)	dung	lepu	exton est
we	nde	an ,	bi:	5	Lad	lung	yser	had	tun	g	W	,	Mas	sen	erv	rall	un	9	ult.							
	Ma	922	nev	hal	tun	y :	Bei a	.llev	n ch	ewi z	che	n 1	brdis	vodev	, 6	leibt	die	e Ge	SCIM	Macas	se.	en	melte	<u>س</u>		
																									llen	
		U	304	PROG E	2		VIC					20001	ger,	U.U.			1 100	MIN UN	J11334	,,,,,	" "	ACCIO.		7 7 63 1	100	•
_												_			_					_	<i></i>		٠.	١٥		
C	H ₂ O	H	T	O,				. (20ء	+	Hz	ע		=>	C	H ₃ OI	7	1 02		->	COZ	+	21	120		
12	Fison ::	uird du-	h Roal-	ion vo-	Ficen/III	\-ovid (F	a.O.\	it Kobl-	netoffer-	novid "	~~\	onner														
12.	Eisen w wobei						dukt fre																			
		lichene l 03 umges		-	ing und l	perechne	en Sie, w	rie viel C	O ₂ freig	esetzt w	ird, wen	n 1000														